Microswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can then navigate in response to these signals. We analyse this navigation by combining deep reinforcement learning with direct numerical simulations to resolve the hydrodynamics. We study how local and non-local information can be used to train a swimmer to achieve particular swimming tasks in a non-uniform flow field, in particular a zig-zag shear flow. The swimming tasks are (1) learning how to swim in the vorticity direction, (2) the shear-gradient direction, and (3) the shear flow direction. We find that access to lab frame information on the swimmer's instantaneous orientation is all that is required in order to reach the optimal policy for (1,2). However, information on both the translational and rotational velocities seem to be required to achieve (3). Inspired by biological microorganisms we also consider the case where the swimmers sense local information, i.e. surface hydrodynamic forces, together with a signal direction. This might correspond to gravity or, for micro-organisms with light sensors, a light source. In this case, we show that the swimmer can reach a comparable level of performance as a swimmer with access to lab frame variables. We also analyse the role of different swimming modes, i.e. pusher, puller, and neutral swimmers.
translated by 谷歌翻译
Recently, extensive studies on photonic reinforcement learning to accelerate the process of calculation by exploiting the physical nature of light have been conducted. Previous studies utilized quantum interference of photons to achieve collective decision-making without choice conflicts when solving the competitive multi-armed bandit problem, a fundamental example of reinforcement learning. However, the bandit problem deals with a static environment where the agent's action does not influence the reward probabilities. This study aims to extend the conventional approach to a more general multi-agent reinforcement learning targeting the grid world problem. Unlike the conventional approach, the proposed scheme deals with a dynamic environment where the reward changes because of agents' actions. A successful photonic reinforcement learning scheme requires both a photonic system that contributes to the quality of learning and a suitable algorithm. This study proposes a novel learning algorithm, discontinuous bandit Q-learning, in view of a potential photonic implementation. Here, state-action pairs in the environment are regarded as slot machines in the context of the bandit problem and an updated amount of Q-value is regarded as the reward of the bandit problem. We perform numerical simulations to validate the effectiveness of the bandit algorithm. In addition, we propose a multi-agent architecture in which agents are indirectly connected through quantum interference of light and quantum principles ensure the conflict-free property of state-action pair selections among agents. We demonstrate that multi-agent reinforcement learning can be accelerated owing to conflict avoidance among multiple agents.
translated by 谷歌翻译
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.
translated by 谷歌翻译
The ability to record high-fidelity videos at high acquisition rates is central to the study of fast moving phenomena. The difficulty of imaging fast moving scenes lies in a trade-off between motion blur and underexposure noise: On the one hand, recordings with long exposure times suffer from motion blur effects caused by movements in the recorded scene. On the other hand, the amount of light reaching camera photosensors decreases with exposure times so that short-exposure recordings suffer from underexposure noise. In this paper, we propose to address this trade-off by treating the problem of high-speed imaging as an underexposed image denoising problem. We combine recent advances on underexposed image denoising using deep learning and adapt these methods to the specificity of the high-speed imaging problem. Leveraging large external datasets with a sensor-specific noise model, our method is able to speedup the acquisition rate of a High-Speed Camera over one order of magnitude while maintaining similar image quality.
translated by 谷歌翻译
使用三维(3D)图像传感器的智能监视一直在智能城市的背景下引起人们的注意。在智能监控中,实施了3D图像传感器获取的点云数据的对象检测,以检测移动物体(例如车辆和行人)以确保道路上的安全性。但是,由于光检测和范围(LIDAR)单元用作3D图像传感器或3D图像传感器的安装位置,因此点云数据的特征是多元化的。尽管迄今已研究了从点云数据进行对象检测的各种深度学习(DL)模型,但尚无研究考虑如何根据点云数据的功能使用多个DL模型。在这项工作中,我们提出了一个基于功能的模型选择框架,该框架通过使用多种DL方法并利用两种人工技术生成的伪不完整的训练数据来创建各种DL模型:采样和噪声添加。它根据在真实环境中获取的点云数据的功能,为对象检测任务选择最合适的DL模型。为了证明提出的框架的有效性,我们使用从KITTI数据集创建的基准数据集比较了多个DL模型的性能,并比较了通过真实室外实验获得的对象检测的示例结果。根据情况,DL模型之间的检测准确性高达32%,这证实了根据情况选择适当的DL模型的重要性。
translated by 谷歌翻译
来自重力波检测器的数据中出现的瞬态噪声通常会引起问题,例如检测器的不稳定性以及重叠或模仿重力波信号。由于瞬态噪声被认为与环境和工具相关联,因此其分类将有助于理解其起源并改善探测器的性能。在先前的研究中,提出了用于使用时频2D图像(频谱图)进行瞬态噪声进行分类的体系结构,该架构使用了无监督的深度学习与变异自动编码器和不变信息集群的结合。提出的无监督学习结构应用于重力间谍数据集,该数据集由高级激光干涉仪重力波动台(Advanced Ligo)瞬态噪声与其相关元数据进行讨论,以讨论在线或离线数据分析的潜力。在这项研究的重点是重力间谍数据集中,研究并报告了先前研究的无监督学习结构的训练过程。
translated by 谷歌翻译
集体决策对于最近的信息和通信技术至关重要。在我们以前的研究中,我们在数学上得出了无冲突的联合决策,最佳地满足了玩家的概率偏好概况。但是,关于最佳联合决策方法存在两个问题。首先,随着选择的数量的增加,计算最佳关节选择概率矩阵爆炸的计算成本。其次,要得出最佳的关节选择概率矩阵,所有玩家都必须披露其概率偏好。现在,值得注意的是,不一定需要对关节概率分布的明确计算;集体决策的必要条件是抽样。这项研究研究了几种抽样方法,这些方法会融合到满足玩家偏好的启发式关节选择概率矩阵。我们表明,它们可以大大减少上述计算成本和机密性问题。我们分析了每种采样方法的概率分布,以及所需的计算成本和保密性。特别是,我们通过光子的量子干扰引入了两种无冲突的关节抽样方法。第一个系统允许玩家隐藏自己的选择,同时在玩家具有相同的偏好时几乎完美地满足了玩家的喜好。第二个系统,其物理性质取代了昂贵的计算成本,它也掩盖了他们的选择,因为他们拥有可信赖的第三方。
translated by 谷歌翻译
量子计算已经从理论阶段转变为实用阶段,在实施物理量子位时提出了艰巨的挑战,物理量子位受到周围环境的噪音。这些量子噪声在量子设备中无处不在,并在量子计算模型中产生不利影响,从而对其校正和缓解技术进行了广泛的研究。但是,这些量子声总是会提供缺点吗?我们通过提出一个称为量子噪声诱导的储层计算的框架来解决此问题,并表明某些抽象量子噪声模型可以诱导时间输入数据的有用信息处理功能。我们在几个典型的基准中证明了这种能力,并研究了信息处理能力,以阐明框架的处理机制和内存概况。我们通过在许多IBM量子处理器中实现框架,并通过模型分析获得了相似的特征内存配置文件来验证我们的观点。令人惊讶的是,随着量子设备的较高噪声水平和错误率,信息处理能力增加了。我们的研究为将有用的信息从量子计算机的噪音转移到更复杂的信息处理器上开辟了一条新的道路。
translated by 谷歌翻译
众所周知,深度神经网络(DNNS)通过特别注意某些特定像素来对输入图像进行分类。对每个像素的注意力的图形表示称为显着图。显着图用于检查分类决策基础的有效性,例如,如果DNN对背景而不是图像的主题更加关注,则它不是分类的有效基础。语义扰动可以显着改变显着性图。在这项工作中,我们提出了第一种注意鲁棒性的验证方法,即显着映射对语义扰动的组合的局部稳健性。具体而言,我们的方法确定了扰动参数的范围(例如,亮度变化),该参数维持实际显着性映射变化与预期的显着映射图之间的差异低于给定的阈值。我们的方法基于激活区域遍历,重点是最外面的鲁棒边界,以在较大的DNN上可伸缩。实验结果表明,无论语义扰动如何,我们的方法都可以显示DNN可以与相同基础进行分类的程度,并报告激活区域遍历的性能和性能因素。
translated by 谷歌翻译
我们提出了一种新型的动态约束不确定性加权损失,以实验处理平衡多个任务对ICML EXVO 2022挑战的贡献的问题。多任务旨在共同认识到声乐爆发中表达的情绪和人口特征。我们的策略结合了不确定性重量和平均动态重量的优势,通过用约束术语扩展权重以使学习过程更具解释。我们使用轻巧的多EXIT CNN体系结构来实施我们提出的损失方法。实验性H-均值得分(0.394)显示出比基线H均值得分的显着改善(0.335)。
translated by 谷歌翻译